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Messina, Salita Sperone 31, I-98166 Messina, Italy

E-mail: girlanda@imeuniv.unime.it

Received 28 January 1999, in final form 9 March 1999

Abstract. We present a fully quantum mechanical theory for an interacting system of photons
and Coulomb correlated electrons and holes in a semiconductor, using a pertubation series in the
exciting laser field. The theory provides microscopic descriptions of nonlinear optical processes in
semiconductors related to the electromagnetic field quantization. As an application of the theory
we show that it is possible to transfer the exciton–exciton Coulomb correlation to photons, thus
producing pairs of near-gap photons with a high degree of quantum entanglement. The photon pairs
emerge from the spontaneous optical decay of biexcitons into two polaritons. The pair intensity
correlations, calculated in the low density limit for a CuCl slab and for semiconductor microcavities,
exhibit quantum features which can be observed by coincidence detection.

1. Introduction

In studying the optical processes in semiconductor systems, much can be learned by regarding
the semiconductor system as an ensemble of noninteracting, two level atoms interacting with
a classical radiation field. The dynamics of such a system is governed by the well known
optical Bloch equations [1, 2]. However the proximity of the atoms in a solid and the strong
Coulomb interaction between the electrons in semiconductors give rise to phenomena that
cannot be described by the optical Bloch equations. The pertinent theory describing the
dynamics of the semiconductor electrons under the influence of the driving laser field is
based on a generalization of the optical Bloch equations including the Coulomb correlation
between electrons, namely the semiconductor Bloch equations (SBE) [3]. SBE without
any approximation have the structure of an open hierarchy of equations. Whenever one is
dealing with a hierarchy of dynamical objects, one is faced with the problem of finding an
appropriate termination procedure. One self-consistent approximation scheme leads to the
Hartree–Fock semiconductor Bloch equations (HFSBE) [3–6]. In HFSBE the termination
is obtained by factorizing the many body correlations using single-particle densities. The
factorization implies a limitation of the Coulomb correlation at first order. Results obtained
within HFSBE agreed well with the experimental findings in a wide range of semiconductor
bulk and confined systems. These effective equations provide a physical picture of the
origin of nonlinearities in the optical response of semiconductor systems. As shown first
by Combescot and Combescot [7], despite the wide range of applicability, HFSBE are not
able to describe those effects originating from states with two electron–hole pairs. Effects
such as the polarization-dependent response of excitons, the red-shift Stark effect of excitons,
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the bound biexciton signatures in two photon absorption and in photoluminescence emission,
cannot be described by HFSBE and lead to more refined theoretical investigations beyond the
HFSBE.

The inclusion of four particle correlations in the optical response of the semiconductor
has been achieved by introducing a different truncation scheme. Axt and Stahl [8] in the
so-called dynamics controlled truncation scheme (DCTS), based the truncation scheme on the
smallness of the optical excitation. Axt and Stahl showed that once the perturbative order
in the excitation strength has been fixed, the dynamics of the interacting electron system can
be described by a closed set of equations. Within this approach, once the perturbative order
in the excitation strength has been fixed, the Coulomb correlation contributing to the optical
response up to fixed order is included exactly. By applying the DCTS, it can be shown that
the third order nonlinear reponse depends only on oneeh-pair subspace (excitons) and the two
eh-pair subspace (biexcitons) [9], hence the third order nonlinear response is intimately tied to
the dynamics of two and four-particle (two electrons and two holes) states.Östreichet al [10],
provided an exact numerical evaluation of the four particle correlation determining the third
order nonlinear response.

SBE and the corresponding approximation schemes outlined above describe the dynamics
of semiconductor electrons interacting with a classical light field. The vast majority of optical
processes in bulk and in confined semiconductor systems can be adequately explained using
the classical theory of electromagnetic radiation. However, although the investigations of
the optical properties of semiconductors have been developed independently of quantum
optics, it is well known that light field quantization is an essential ingredient for a proper
description of semiconductor optics. The simplest example of the importance of field
quantization in semiconductors is the spontaneous radiative recombination of an electron and
a hole, which is the underlying process of light generation in the light-emitting diode and in
photoluminescence experiments [11]. Although spontaneous radiative recombination can be
included phenomenologically in semiclassical treatments, it is a process tied to electromagnetic
field quantization.

Another important example is provided by the hyper Raman scattering (HRS) process.
HRS is known as an efficient technique of nonlinear optical spectroscopy applied to the
investigation of bulk polariton dispersions [12]. HRS can be schematically described as
follows: two incident photons of given energy and wave vectors propagate inside the crystal
as polaritons and create a virtual state with two electron–hole pairs which acts as intermediate
state to create two final polaritons or a longitudinal exciton and a polariton. Energy and
momentum are conserved in the whole process. The emission line from one final polariton
can be detected experimentally. The determination of the polariton dispersion has successfully
been accomplished by HRS in several large-gap bulk semiconductors [12]. HRS is a process
related to third-order nonlinear susceptibility, and can be considered as spontaneous non-
degenerate four-wave mixing (FWM). In FWM the optical decay of the virtually excited
biexcitons is stimulated by sending an additional light beam, while in HRS the decay is
determined by intrinsic vacuum fluctuations. Nonlinear spontaneous processes occupy a
central position in the field of quantum optics, and are well known to be sources of nonclassical
light [13]. HRS, being a nonlinear spontaneous process where many-body correlations and
vacuum fluctuations come together, represents an important and unexplored bridge between
semiconductor nonlinear-optics and quantum optics. The microscopic description of HRS
poses a considerable challenge to current theories since it requires a full quantum analysis of
the semiconductor nonlinear response beyond the HFSBE which are not able to include four
particle correlations and hence effects from states with two electron–hole pairs.

We have extended the DCTS, to include the electromagnetic field quantization [14–16]. In
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this way we were able to include the Coulomb correlation beyond first order as well as the field
vacuum fluctuations. In this paper we present a microscopic theory of exciton interaction effects
in nonlinear optical processes. Furthermore we analyse the signatures of the electromagnetic
field quantization in the nonlinear optical response of excitons. In particular in section 5,
by applying the extended DCTS, we show that the nonlinearly correlated excitations in bulk
semiconductors and in semiconductor microcavities can produce entangled near-gap photon
pairs which can be observed by coincidence detection.

Entangled particles have been produced in a variety of systems. Photon pairs produced
by parametric down conversion [17] is the most known example. Entanglement describes a
composite quantum system that cannot be factored into a product of single-particle states,
and therefore has no classical counterpart. It is manifested by the potential to exhibit
correlations that cannot be obtained with classical systems [18]. The theory of quantum
information processing lies in entanglement. Teleportation of quantum states [19,20], quantum
computation steps [21] and quantum cryptography [22] are recent striking applications of
entanglement. Owing to the possibility of engineering the valence and conduction electronic
states of semiconductors opened up by modern growth techniques, and owing to the possibility
of controlling the exciton–photon interaction in semiconductor microcavities (MCs) [23], the
generation of entangled photon pairs in semiconductor systems is expected to be promising in
realizing integrated quantum-optical devices.

2. The exciton-photon system

We consider the problem of a semiconductor coupled to a photon field by electron polarization.
We start from the Hamiltonian̂Hs = Ĥ0+V̂Coul of the usual semiconductor model [3,7], which
is composed of a free-particle partĤ0 and the Coulomb interaction̂VCoul . We consider a zinc
blende like semiconductor band structure. The valence band is made from p-like (l = 1)
orbital states which, after spin–orbit coupling, give rise toj = 3/2 andj = 1/2 decoupled
states. In materials like CuCl, the upper valence band is twofold degenerate (j = 1/2), while
in materials like GaAs it is fourfold degenerate (j = 3/2). The conduction band, arising
from an s-like orbital state(l = 0), gives rise toj = 1/2 twofold states. In the following,
for the sake of simplicity, we will refer to materials like bulk CuCl and will only consider
states from the twofold upper valence band and lower conduction band. Analogous results can
be obtained by considering the fourfold valence band and considering quantum structures as
quantum wells (QWs). Onlyehpairs with total angular momentumJ = 1 are dipole active
in optical interband transitions. Photons with circular polarizationsσ = +(−) excitee with
me = + (me = −) andh with mh = + (mh = −).

An important feature ofĤs is that its matrix elements between states with a different
number ofeh pairs are zero. As a consequence it does not couples states with different
numbers ofehpairs.

The eigenstates
∣∣N, α,k〉with energyωNαk of Ĥs can be labelled according to the number

N of ehpairs and the total momentumk [7, 10]. The state withN = 0 is the semiconductor
ground state and corresponds to the full valence band. TheN = 1 subspace is the exciton
subspace. Optically active exciton states can be labelled with the additional quantum number
α = (n, σ ) whereσ indicates the spin (e.g.σ = + indicates aneh pair withme = + and
mh = + ) andn spans all the bound and unbound exciton levels. These states can be obtained
by applying the exciton creation operator

B̂
†
n,σ,k =

∑
k′
8∗n,σ,k′ ĉ

†
σ,k′+k/2d̂

†
σ,−k′+k/2

to the semiconductor ground state, where the exciton wave function8n,σk′ is the solution to the
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Wannier equation for the semiconductor. The set of bound and unbound states withN = 2 eh
pairs, determining the biexciton subspace, can be obtained solving the corresponding secular
equation [24], or by using a simpler interaction model [25].

By denoting asµσ the interband dipole matrix element between the Bloch states of the
bands, theσ electronic polarization density at wave vectork is given by

P̂
(+)
σ,k = µ∗σ

∑
k′
ĉσ,k′+k/2d̂σ,−k′+k/2

and can be expressed in terms of exciton operators

P̂
(+)
σ,k = µ∗σ

∑
n,k′

8∗n,σ,k′B̂n,σ,k =
∑
n

M∗nσ B̂n,σ,k ≡
∑
n

P̂
(+)
n,σ,k. (1)

The totalσ electronic polarization at wave vectork is P̂σk = P̂
(+)
σk + P̂ (−)σk , P̂ (−) being the

Hermitian conjugate of̂P (+).
In the following, in order to analyse the dynamical evolution of the electron polarization,

we will use the projection operators defined by

X̂N,α,k;N ′,α′,k′ =
∣∣N, α,k〉〈N ′, α′,k′∣∣. (2)

By using the completeness relation1 ≡ ∑
N,α,k X̂N,α,k;N,α,k, the exciton operators can be

expanded in terms of projection operators [10]

B̂n,σ,k = X̂0;1,n,σ,k +
∑

N>1,α′,α′′,k′k′′

〈
N, α′,k′

∣∣B̂n,σ,k∣∣N + 1, α′′,k′′
〉
X̂N,α′,k′;N+1,α′′,k′′ . (3)

The translation symmetry obviously impliesk′′ − k′ = k. Before going on, we point out that
α, together with the numberN of ehpairs and with the wave vectork, spans the eigenstates
of HamiltonianĤs . When referred to exciton states (N = 1), or to exciton operatorŝB†

α,k,
α ≡ (n, σ ).

The interaction of the electrons of the semiconductor with a photon field is given in the
usual dipole and rotating wave approximations

ĤI = −
∑
σ,k

P̂
(−)
σk Ê

(+)
σk + H.c. (4)

whereÊ(+)σk = (1/V)
∫

d3rÊ(+)σ (r)e−ik·r is the component of the positive part of the electric-
field operator with wave vectork andV the quantization volume. The total electric-field

operator isÊ(r) =∑σ

(
Ê(+)σ (r) + Ê(−)σ (r)

)
andÊ(−)σ (r) the Hermitian conjugate of̂E+

σ (r).

Let us now consider the electromagnetic field quantization in the absence of the
semiconductor system. We quantize the field propagating inside a general dielectric planar and
nonabsorbing system. For example, the system can be either a planar dielectric microcavity
in the absence of the active semiconductor medium (e.g. the QWs), or a bulk slab of given
background dielectric constantεb. By exploiting the planar symmetry of the dielectric system
we can assume translational symmetry in the incidence plane so that the in-plane component
p = (kx, ky, 0) of the wave vectork is a good quantum number for the whole system. In
the multipolar form of the interaction adopted here, the field coordinate is given by the vector
potential, while the conjugate momentum is given by the displacement operator. By using the
usual quantization scheme for the transverse electromagnetic field, we can expand the field
variables in terms of the photon operatorsâσ,p(ω). The photon Hamiltonian in the absence of
the interacting semiconductor system, in terms of photon operators reads

Hph =
∑
σ,p,ω

ωσ,p(ω)â
†
σ,p(ω)âσ,p(ω). (5)
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The expansion of the operators of the electronic system in terms of projection operators
is useful for introducing the DCTS [10]. As we have pointed out in the introduction, and as it
is known from semiconductor nonlinear optics [9, 26], the theory describing the dynamics
of the semiconductor electrons interacting with a light field has the structure of an open
hierarchy of dynamical variables. Whenever one is dealing with an open hierarchy of dynamical
objects, one is facing the problem of finding an appropriate termination procedure. Here we
present an extension of the truncation procedure introduced by Axt and Stahl [9] to include the
quantization of the light field and polariton effects. Such a truncation scheme is analogous to
the classification scheme of nonlinear optical processes, where the coherent input light beam
represents the expansion parameter. Here we label the photon modes simply byk. For the
sake of simplicity we shall consider a single mode coherent input electric field,

〈
âkI (t0)

〉 = E
being the expectation value of its photon operator. Generalization to a multimode input field
is straightforward. We consider the following operators acting on the electron–photon system

X̂N,α,k;N ′,α′,k′
∏
k,k′
â

†nk
k â

n′
k′
k′ . (6)

Operators defined in equation (6) govern the dynamics of the photon–electron interacting
system. The truncation scheme is based on the expansion of the expectation values of these
operators in terms of power series in the input field. We have proved [16] the following
theorem.

Theorem. The expectation value of operators of the electron–photon system defined in
equation (6), subjected to HamiltonianŝHs , Ĥph and ĤI , can be expressed in terms of a
power series in the input field as〈
X̂N,α,k;N ′,α′,k′

∏
k,k′
â

†nk
k , â

n′
k′
k′

〉
=

i0∑
i=0

〈
X̂N,α,k;N ′,α′,k′

∏
k,k′
â

†nk
k , â

n′
k′
k′

〉(N+N ′+n+n′+2i0)

+O(EN+N ′+n+n′+2i0+2) (7)

wheren =∑k nk and the superscripts indicate the power order inE andO
(
Ej
)

indicates the
terms of order> j .

The theorem permits a truncation of the hierarchy of equations for the expectation values
of operators defined in equation (6). It can be shown that the equation of motion for a given
operator withp̄ = N + N ′ + n + n′ introduces an open hierarchy of equations for operators
with p = p̄ + 2i0 with i0 > 0. Once a perturbative orderpM has been fixed, the theorem
establishes that the hierarchy of equations for expectation values is closed, and only operators
with p 6 pM are to be considered. By inspecting the Heisenberg equation of motion for the
electron–photon system and applying the theorem, one finds that to calculate field intensities at
the lowest nonlinear order, only the dynamics of electronic states withN = 1 andN = 2 has
to be included. Analogous considerations and inspections can be brought on when considering
perturbative calculations of higher order field-field correlation functions. As a last remark we
point out that the validity of the theorem can be extended to include the interaction of the
electron system with a phonon thermal bath.

3. The equations of motion for the exciton–photon system

In order to calculate the dynamical evolution of the electronic polarization in a photon field,
we consider the Heisenberg equation of motion for the exciton operatorsB̂α,k. For the sake
of simplicity we drop the labels describing wave vectors and polarizations. By expanding
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the exciton operators in terms of projection operators (3) and using the fact that projection
operators are built on from eigenstates ofHs we obtain

i
∂

∂t
B̂n = ω1,nB̂n −MαÊ

+ +
∑

N>1,α′
X̂

†
0;N,α′R̂

(N+1)

α;N,α′ (8)

where we have defined the correlation force

R̂
(N+1)

α;N,α′ =
∑
α′′
c
(N)

α,α′,α′′X̂0;N+1,α′′ +
∑
α′′
�

(N)

α,α′,α′′X̂0;N,α′′Ê+. (9)

The coefficients�(N) andc(N) coincide with those obtained in the semiclassical theory of the
nonlinear response in interacting electron system [10] and are given by

c
(N)

αα′α′′ =
(
ωN+1,α′′ − ωN,α′ − ω1,α

) 〈
N, α′

∣∣B̂α∣∣N + 1, α′′
〉

(10a)

�
(N)

nσ,α′,α′′ =
∑
n2

Mn2

〈
N, α′,k′

∣∣ [B̂n, B̂†
n2

]
− δn,n2

∣∣N, α′′〉. (10b)

The last term of equation (8) is the nonlinear source term for the interband polarization.
Nonlinear optical effects [10] as well as quantum optical correlations [14] originate from
R̂(N). The first term in the r.h.s. of equation (9) comes from Coulomb interactions between
electrons whereas the second term expresses the phase space filling and is directly related, as
can be observed by looking at equation (10b), to the deviations of commutation relations
of exciton operators from ideal bosonic rules. Replacing the electric-field operator by a
classical field amplitude, and taking the expectation value, the operator equation (8) reduces
to the corresponding semiclassical equation describing the exact nonlinear response of the
semiconductor with Hamiltonian̂Hs and interacting with light [10].

The nonlinear source term in equation (8) is expressed as a summation of projection
operators whose dynamics introduces a hierarchy of equations. The truncation of the hierarchy
of equations can be achieved using a classification according to powers in the driving field as
shown in section 2. In principle, the truncation theorem cannot be applied directly to operators;
it applies to expectation values. However working with Heisenberg equations for operators is
more convenient, and allows us to obtain more compact expressions. Once the perturbative
order has been chosen, by inspecting the expectation values of interest (which are essentially
the expectation values of the electric-field operator and of field-field correlations), one can see
what the relevant operators are, whose dynamics has to be taken into account. In particular, in
order to describe the lowest nonlinear order dynamics, it is sufficient to determine the lowest
order nonlinear source term. In particular we have to write down the Heisenberg equation of
motion for the operatorŝX(2)0;2,α andX̂(1)0;1,α, where the superscripts label the perturbative order
in the input field of the corresponding expectation values. The projection operators in the
truncated nonlinear source term obey the following equations

i
∂

∂t
X̂
(1)
0;1,n = ω1,nX̂

(1)
0;1,n −MnÊ

(1)+ (11)

i
∂

∂t
X̂
(2)†
0;2,α = ω2,αX̂

(2)†
0;2,α −

∑
n′;n′′

Mn′′ 〈2, α| B̂n′′
∣∣1, n′〉 X̂(1)0;1,n′Ê

(1)+. (12)

Until now we have analysed the dynamics of the electronic polarization. In order to include
properly the polariton effects we have to analyse the equations of motion for the light field.
In particular, to obtain the lowest order nonlinear response, we have to derive an equation of
motion forÊ(1)+ andÊ(3)+. From the Heisenberg equation of motion for the field variables, in
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the frequency space we can obtain the following wave equation for the electric field operator
in an arbitrary planar dielectric system(

∂2

∂z2
+ εb(z)

ω2

c2
− p2

)
Ê+
p(ω, z) = −

ω2

ε0c2
P̂ +
p (ω, z) (13)

whereεb(z) is the background dielectric constant, andP̂ +
p (ω, z) is the electronic polarization.

For a bulk slab it is given byP +
p (ω, z) =

∑
kz

eikzzP +
(p,kz)

(ω)and, as we have seen in equation (1),

can be expressed in terms of exciton operators.P̂ +
p (ω, z) is the onlysourceof nonlinearity.

When analysing linear polariton propagation it is sufficient to include in equation (13) only
the term

P̂ (1)+p (ω, z) =
∑
n

M∗n
∑
kz

eikzzX̂
(1)
0;1,n,(p,kz)(ω) ≡

∑
n

M∗nX̂
(1)
1,n,p(ω, z).

When analysing the lowest order nonlinear response, one also has to include in equation (13)
the polarization termP̂ (3)+p (ω, z). The lowest order nonlinear quantum dynamics can thus

be described by two coupled equations forÊ(3)+p , andP̂ (3)+p with P̂ (3)+p driven by a nonlinear
source term, including exciton and biexciton dynamics.

4. Hyper Raman scattering

Here we analyse the coherent nonlinear response up to the lowest non-zero order in the coherent
input light field. In particular we analyse FWM and HRS emission at energies close to the
semiconductor band edge. In the following we include explicitly the in-plane wave vector
componentsp of the field and the electronic variables, while we omit polarization indices.
The part of the source term in the equation of motion forP̂ (3)+n,p (ω, z) describing nonlinear
processes induced by the Coulomb interaction is given by

Ŝ(3)n,σ,p(ω, z) =
∑
α′,p′,p′′

∫
dω′X̂(1)†1,α′,p′(ω

′ − ω, z)
∑
α′′
c
(2)
αα′α′′X̂

(2)
2α′′,p′′(ω

′, z) (14)

where we have defined̂X(2)2α,p(ω, z) ≡
∑

kz
eikzzX̂

(2)
0;2,α,(p,kz)(ω). We point out that equation (14)

has the same structure of the corresponding source term of the semiclassical theory (equation
(6) of [10]), determining FWM via biexcitons. FWM can be schematically described as a two
step semiclassical process: first a one pump beam of frequencyωI and of given direction,
creates a virtual biexciton grating

〈
X̂2α,2pI (2ωI , z)

〉
, then the optical decay of the virtually

excited biexcitons is stimulated by sending an additional probe light beam atω′ which drives
the exciton amplitude

〈
X̂1,n,p′(ω

′, z)
〉
, given, according to equation (11) by〈

X̂
(1)
n,p′(ω, z)

〉 = χ(1)n eik′zzEp′(ω
′)δ(ω − ω′) (15)

whereχ(1)n = Mn/(ω1,n −ω) andEp′(ω′) is the amplitude of the coherent input probe field at
frequencyω′. The source term for FWM emission at energyω = 2ωI −ω′ and in-plane wave
vectorp = 2pI − p′ is thus determined by [10]〈

X̂
(1)
1,n,p′(ω

′, z)
〉∗〈
X̂
(2)
2α,2pI

(2ωI , z)
〉
. (16)

In HRS the first step, i.e. the excitation of biexcitons by a one (or two) pump light beam,
coincides with the first step in FWM, except the second step is different; in HRS there is no
additional light beam and

〈
X̂1

1,n,p′(ω
′, z)

〉 = 0. However, although the expectation value of

X̂1,n,p′(ω
′, z) is zero, its variance is not due to the quantum-mechanical zero-point motion of

excitons. In HRS it is the exciton system, by means of its vacuum fluctuations, which probes
itself and determines the optical decay of biexcitons.
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Since in HRS as well as in FWM the biexciton grating is driven by the coherent laser field,
we can replace in equation (9) the biexciton operator by thec-number corresponding to its
semiclassical expectation value. The semiclassical expectation value of the biexciton operator
is obtained taking the expectation value of equation (12) and performing the semiclassical
factorization:

〈
X̂
(1)
0;1Ê

(1)
〉 → 〈

X̂
(1)
0;1
〉〈
Ê(1)

〉
. By this approximation we are assuming that the

field fluctuations in the input laser beam can be neglected with respect to the strong field
expectation value. We consider one input pump beam, driving the biexciton amplitude, of
given direction and frequencyωI , with amplitude

〈
E+
pI
(ω, 0)

〉 = EpI (ωI )δ(ω − ωI ). After
replacing the biexciton operator by its expectation value, we obtain for the biexciton amplitude
the following expression

X̂
(2)
2α,2pI

(ω, z) = δ (ω − 2ωI )

ω2,α − ω
∑
n1,n2

Mn2 〈2, α| B̂n2 |1, n1〉 × χn1(ωI )e
2ikpI zEpI (ωI )EpI (ωI ).

(17)

Introducing equation (17) into equation (14), the nonlinear source term can be written as

Ŝ(3)n,p(ω, z) =
∑
n′
X̂

†
1,n′,p′(ω

′, z)χn,n′(ωI , ωI )e2ikpI (ω)zE2
pI
(ωI ) (18)

whereω′ = 2ωI − ω, p′ = 2pI − p and with the susceptibility function given by

χn,n′ =
∑
n1n2

Mn1Mn2

(
Y
n1,n2
n,n′ −Wn1,n2

n,n′ (2ωI )
)(

ω1,n1 − ωI
) (
ω1,n2 − ωI

) . (19)

In equation (19)W(2ωI ) is the spectral distribution of the two-exciton correlation function
defined and computed by a first principles numerical calculation in [10]. It contains resonances
due to bound biexciton molecules as well as contributions from the continuum of unbound
biexciton states.Y describes exciton–exciton interactions as in the usual HFSBE. It is a first
order term in the Coulomb interaction and, in contrast toW , it does not depend on biexciton
states. These two terms read

W
α1α2
αα′ (2ωI ) =

〈
0

∣∣∣∣Dαα′
1

Ĥc − 2ωI
D†
α1α2

∣∣∣∣ 0〉 (20a)

Y
α1α2
αα′ =

〈
0
∣∣Dαα′B̂

†
α1
B̂†
α2

∣∣0〉 (20b)

whereD̂αα′ =
[
B̂α,

[
B̂α′ , Ĥc

]]
. We also notice that, in principle, the phase space filling term

in R̂(2) contributes to the nonlinear source term giving rise to a further susceptibility term.
However, for 2ωI almost resonant with the bound biexciton energy level, this term and also
the contribution fromY are not important with respect to the correlation spectral distribution
W(2ωI ). Equation (20) has been obtained exploiting the fact that

∑
α

∣∣2, α,k〉〈2, α,k∣∣ is the
unity operator for the biexciton subspace of given wave vectork. Now the lowest order source
term is completely determined and is composed by ac -number which multiplies the operator
X̂
(1)†
1,n′,p′(ω

′, z), whose equation of motion has been given in equation (11).
Once we have determined the source term for the scattering process, we can write down

the equation of motion for the nonlinear polarization in the frequency domain, from which we
obtain

P̂ (3)p (ω, z) =
∑
n

χ(1)n (ω)Ŝ(3)n,p(ω, z) +M∗nχ
(1)
n (ω)Ê(3)p (ω, z). (21)

In order to calculate the scattered field, as in classical nonlinear optics, we need to consider
field propagation inside the medium. By including equation (21) and the linear polarization
term

P̂ (1)p (ω, z) = M∗nχ(1)n (ω)Ê(1)p (ω, z) (22)
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into equation (13), we obtain the following wave equation(
∂2

∂z2
+ k2

z (ω)

)
Ê+
p(ω, z) =

ω2

ε0c2

∑
n

χ(1)n (ω)Ŝ(3)n,p(ω, z). (23)

In equation (23)kz is thez component of the wave vector inside the medium, satisfying the
following polariton dispersion relation

k2 ≡ p2 + k2
z =

ω2

c2
ε(ω) (24)

with ε(ω) = εb +
∑

n |Mn|2 /[ε0(ωn − ω)].
Until now we have not taken into account dissipation. As is well known, excitons in

semiconductors are an open quantum system in interactions with phonons and other dephasing
mechanisms. We include attenuation due to the various scattering mechanisms acting on the
polarization waves in a phenomenological way, by introducing the coupling of excitons with
a large number of reservoir oscillators at temperatureT = 0 K. Following the usual Langevin
approach, the resulting Heisenberg–Langevin equations for the electronic polarization include
a damping term and a quantum-noise Langevin operator. As a consequence, when taking into
account dephasing,kz = kRz + ikIz becomes complex and describes waves attenuations inside
the medium and the operator wave equation (23) include a noise-current term, which ensures
preservation of commutation relations despite absorption.kz obeys equation (24) also in the
presence of attenuation. In this case, however, the dielectric functionε(ω) is complex and it
is given byε(ω) = εb +

∑
n |Mn|2 /[ε0(ωn − ω − iγx)]. Correspondingly we also introduce

a phenomenological dephasing rate02 for the semiclassical biexciton amplitude by replacing
in equation (17)ω2,α with ω2,α − i02.

We consider a semiconductor slab of thicknessL with ideal anti-reflection coatings on
its sides so that, for the range of frequency which we will take into account, the photon flux
remains unaffected when crossing the interface. In vacuum, the field componentsÊ+

p(z, ω)

can be written in terms of photon operatorsÊ+
p(z, ω) = K0

p(ω)e
ik0
z zâp(ω), wherek0 = ω/c

andK0
p(ω) is a normalization coefficient ensuring satisfaction of the commutation rules

for the light field. For future use it is useful to introduce the photon number operator as
n̂p(ω) =

∫ ω+δ
ω−δ dω′â†

p(ω
′)âp(ω′), where 2δ ( > 0 and small) is the bandwidth of the photon-

counter.
Applying the usual slowly varying envelope approximation, and integrating the wave

equation equation (23), after a distancez = L the electric-field operator is given by

Ê+
p(ω, L) = Ê(1)p (ω, L) + ÊNLp (ω, L) (25)

with the scattered field given by

ÊNLp (ω, L) = ω2

ε0c22kz

∑
n,n′

χ(1)n (ω)χn,n′(ωI , ωI )E
2
pI
(ωI )

×eikzL
∫ L

0
dz′ei(2kzI−kz)z′X̂(1)†1,n′,p′(ω

′, z′) (26)

whereω′ = 2ωI−ω andp′ = 2pI−p. The scattered electric-field operator equation (26) is our
starting-point for analysing coherent nonlinear processes related to the third order nonlinear
susceptibility induced by a pump beam.

We first observe that, in the presence of a coherent probe light fieldEp′(ω
′), the exciton

amplitude
〈
X̂

†
1,n′,p′(ω

′, z′)
〉

is driven according to equation (15), furthermore the expectation

value of the operator̂E(1)p (ω, L) in equation (25) is zero as the light mode atp 6= pI ,p′ is not
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driven by any input light beam and the photon state in the Heisenberg picture contains zero
photons of in-plane wave vectorp. Taking the expectation value of equation (26) we recover
the semiclassical result describing FWM via biexcitons.

In HRS there is no input light beam at energyω′ and in directionp′, the light mode at
p′ is thus in the vacuum state and we obtain for the electric field in equation (25)

〈
Ê(+)σp

〉 = 0.
Instead the steady state power emission spectrum, defined by

Iσ,p(ωs, L) ∝
∫

dτeiωsτ
〈
Ê(−)σp (t, z)Ê

(+)
σp (t + τ, z)

〉 ∝ n̂p(ωs) (27)

is different from zero.Iσ,p(ωs, z)dωs is the intensity of light measured by an ideal narrow-
band photodetector able to select a narrow frequency band dωs aroundωs , and able to select
a single propagation direction. In particular the detector selects a single mode propagating in
the direction determined by the angleθ = arcsin[c2p2/ω2] between the propagation direction
and thez axis, and by the azimuthal angleφ = arctan(py/px).

In the following we analyse the nonlinear scattering process involving the lower polariton
branch. We consider a monochromatic input light beam with frequency below the 1s exciton
level, which propagates inside the semiconductor as a polariton in the lower branch. We
consider the case in which two photons of the input beam create a virtual biexciton state which
spontaneously decays into two polaritons in the lower polariton branch. We label the final
polariton quanta as 1 and 2. Energy and in-plane momentum are conserved, respectively
ω1 + ω2 = 2ωI andp1 + p2 = pI . By using the electric field operator given in equation (25),
we can calculate the mean number of emitted photons at mode 1 and energyω1, which is given
by

〈n̂1〉 = Q2
1,2

∣∣χ(3)E2
I (ωI )

∣∣2 g1(L) (28)

whereQ1,2 = ω1ω2/(2ε0c
2
√
kRz1
kRz2
), andg1(z) describes the propagation and the phase-

matching resonance condition. It is given by

g1(z) =
kRz2

kz2

{
e−2kI1 z

2kzI − kz1 − kz2

(
1− e−2(2kIzI−kIz1)z

2
(
2kIzI − kIz1

) + i
1− e−i(1k∗z )z

1k∗z

)
+ c.c.

}
. (29)

The susceptibility determining the third order nonlinear response is given byχ(3) =∑
n,n′ χ

(1) ∗
n′ χn,n′χ

(1)
n . The role of modes 1 and 2 can be interchanged. Thus the spontaneous

decay of virtually excited biexcitons can give rise to two light beams 1 and 2. They are
sonsof the virtually excited states with twoeh pairs. Of course〈n̂2〉 can be obtained from
equation (28) simply by exchanging the labels 1 and 2. The intensity of the scattered fields
〈n̂1,2〉, calculated at the phase-matching resonance condition (Re[1kz] = 0), are displayed in
figure 1 as a function of the incident energyωI for a CuCl slab of 50µm. We have considered a
forward scattering geometry with incident light orthogonal to the slab and observation angles
' 10◦. The two-exciton correlationW(2ωI ) in the resonant nonlinear susceptibility was
calculated by assuming one bound biexciton level with energyω2 = 6.372 eV and with
homogeneous broadening02 = 1.6 meV. The exact two-exciton correlationW(2ωI ) has been
calculated numerically for a one-dimensional semiconductor model with long-range Coulomb
interaction [10]. The various scattering mechanisms determine an increasing trend in the
dephasing rateγ as the energy approaches the exciton resonance. We have used a dephasing
rate, displayed in the inset in figure 1, fitting quite well the experimental data [27]. The peak at
higher energy(〈n̂2〉) is slightly lower than the other due to a larger degree of dephasing during
propagation. The results shown in this section demonstrate the intimate connection of HRS
with electromagnetic field quantization. The underlying microscopic scattering mechanisms of
HRS involve many-body correlations and quantum-mechanical zero-point motion in a strong
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Figure 1. The mean number of emitted photons〈n̂1,2〉and the degree of entanglementG12 calculated
at the phase-matching resonance condition as a function of the incident energy for a CuCl slab of
thicknessL = 50 µm. The inset shows the dephasing rate as a function of energy used for the
calculations.

coupling regime. The results shown here indicate that HRS has to be regarded not only as an
efficient technique for the investigation of polariton dispersion but also as a novel promising
tool to explore excitonic quantum dynamics as we wiil see in the next section.

5. Entangled photon pairs from the optical decay of biexcitons

The electric field operator for third order nonlinear processes calculated in the previous section
allows us to also calculate higher order field-field correlations. In the following we analyse the
correlation properties of the light emitted in the HRS process. We present results for a CuCl
slab and for III–V semiconductor microcavities.

5.1. Slab of CuCl

We first consider the two-mode intensity correlation functions〈n̂2n̂1〉. By using the electric
field operator given in equation (25), we obtain

〈n̂1n̂2〉 = 〈n̂2n̂1〉 = Q2
1,2

∣∣χ(3)E2
I (ωI )

∣∣2 g1,2(L) (30)

where

g1,2(z) = e−2(kIz1+kIz2)z

∣∣∣∣1− e(2kzI−kz1−kz2)z

2kzI − kz1 − kz2

∣∣∣∣2 . (31)

As we have already observed, modes 1 and 2 are not independent but are related by total energy
and momentum conservation. For each other modem, different from mode 2 and from the
input modeI , we obtain (in the low density limit)〈: n̂1n̂m :〉 = 0 (:: denotes normal order).
This is due to the fact that, at lowest order, photons are created in pairs and, if 1 andm do
not belong to the same pair,〈: n̂1n̂m :〉 6= 0 implies a higher order scattering process. As a
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consequence, the single-mode correlation functions, calculated in the low density limit, are
zero. In particular we obtain〈: n̂2

1 :〉 = O(E6
I ), whereO

(
E6
I

)
indicates those terms of order

> 6.
The intensity correlation functions in the low density limit exhibit quantum features as

they violate the classical Cauchy–Schwartz inequality,〈: n̂2n̂1 :〉2 6 〈: n̂2
1 :〉〈: n̂2

2 :〉. Entangled
photon pairs exhibit fourth order interference in the joint detection probability that cannot be
obtained with classical systems [18]. In classical systems the visibility of interference fringes
cannot exceed 50 per cent. The visibility of interference can be written in terms of the fourth
order correlations asU = 2〈: n̂2n̂1 :〉/(〈: n̂2

1 :〉+〈: n̂2
2 :〉+2〈: n̂2n̂1 :〉). By using the correlations

calculated above we obtainU = 1−O(E6
I ), i.e. fringe visibility reaching 100 per cent in the

low density limit. Thus fourth order interference could be used to observe experimentally the
quantum features of light emerging from the spontaneous decay of biexcitons.

We can quantify the degree of quantum entanglement, by using the ratio

G1,2 ≡ 〈: n̂2n̂1 :〉/
√
〈n̂2

1〉〈n̂2
2〉 6 1

which is amaximum for ideal entangled pairs. By using the correlation functions calculated
above, in the low density limit, we obtain

G1,2 = g12(L)√
g1(L)g2(L)

. (32)

In the absence of attenuation,g12(L) = g1(L) = g2(L) and we obtainG1,2 = 1. Thus
we can conclude that the optical decay of states with two electron–hole pairs, for negligible
absorption, produces an ideal entangled pair of photons. Of course photon reabsorption tends
to destroy ideal entanglement. In particular the degree of entanglement is affected by those
events which, after the biexciton decay, scatter one polariton of the pair. A simple criterium for
negligible reabsorption iskIL� 1. Thus the degree of entanglement depends strongly on the
energy of the scattered light and on the length of the slab. Figure 1 displaysG1,2 as a function
of the incident energy. Reabsorption causesG1,2 to go rapidly to zero as�I approaches the
energy of the 1s exciton levelω1 = 3.2026 eV. The noticeable biexciton binding energy,
determined by the Coulomb interaction between excitons, in CuCl (as well as in other large
gap semiconductors) permits the detection of hyper Raman lines by using incident light with
energy sufficiently far from the exciton level to prevent strong reabsorption. This permits the
polariton pairs to escape the crystal with a high degree of entanglement, as shown in figure 1.
The pair formation and reabsorption during propagation is shown in figure 2, which gives
information on the sample thickness more convenient to observe the photon pairs.

5.2. Cavity polaritons

With the development of crystal growth technologies it has become possible to realize
semiconductor systems where both electrons and photons are confined along one or more
directions. When a quantum well (QW) is placed inside a planar MC, dramatic changes in the
optical response can be produced [23]. In contrast to bulk materials, the optical properties can
be tailored by the design of the cavity and of the embedded QWs. In the following we will
briefly show how device’s design affects the entanglement of polariton pairs. We treat the cavity
field in the quasi-mode approximation, the cavity field is quantized as though the mirrors where
perfect, and the resulting modes, whose annihilation operators in the Heisenberg representation
are labelled bŷap(t), are coupled by an interaction term to the external continuum of modes.
The linear coupling of cavity modes with the external modes provides both the damping
and the input optical pumping of the cavity modes. We have applied this approximation
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Figure 2. The mean number of emitted photons〈n̂1,2〉, the pair correlations〈n̂1n̂2〉, and the degree
of entanglementG12 calculated at the phase-matching resonance condition as a function of the slab
thickness.

scheme to analyse quantum optical effects in cavity embedded electron systems [14,15]. We
have calculated the normalized power spectrum of noise in the intensity difference of the two
output beams emerging from HRS, following the analogous Heisenberg–Langevin perturbative
treatment that we used for the bulk case. The pertinent Heisenberg–Langevin equations for
the exciton–photon system can be found in [15].

As for the bulk case we label the final polariton quanta as 1 and 2. In order to test the
nonclassical behaviour of the emitted photon pairs, we calculate the normalized spectrum of
fluctuations in the output intensity differenceÎ1 − Î2, whereÎ1(2) = 2γcâ

†
1(2)(t)â1(2)(t). The

normalized spectrum of fluctuations is defined by

S(�) =
∫

dτe−i�τ
〈
1(Î1(τ )− Î2(τ ))1(Î1(0)− Î2(0))

〉
2γc

(〈
Î1(0)

〉
+
〈
Î2(0)

〉) (33)

where for a generic operatorx̂, 1x̂ = x̂ − 〈x̂〉. We find that the intensity difference carries
fluctuations below the shot noise level (S(�) < 1). The normalized power spectrum of noise
in the intensity difference fieldS(�) > 0 cannot be less than 1 in classical fields. Furthermore,
ideal entangled states displays at� = 0 complete noise reduction (S(0) = 0). We do not report
here the resulting expressions forS(�) as they are somewhat lengthy and contains numerical
integrations. In figure 3 we display the percent noise reduction 1− S(0) as a function of the
photon escape-rate through the MC’s mirrorsγc, calculated for two different values of the
exciton dephasing rateγx . We have chosen the pump energy in between the Rabi peaks and
at normal incidence as shown in figure 4. The cavity is resonant with the bare exciton energy.
We have usedV = 5.6 meV for the exciton–photon coupling. Figure 3 clearly shows that, in
contrast to bulk systems, an important level of entanglement can be produced, also at resonance
and taking into account realistic exciton dephasing rates and exciton–photon couplings for III–
V semiconductor MCs. The results displayed in figure 3 can be explained observing that in
MCs at zero detuning, the criterion for small reabsorption isγx � γc. The conditionγx � γc
implies that the photon pairs can escape the MC before being reabsorbed or scattered by the
exciton dephasing. However as shown in figure 3, the noise suppression forγx � γc is not
100× 100 and depends onγx . This can be understood by observing that the photon pairs are
emitted from the QW, and also for high values ofγc they are expected to feel the presence of
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pairs 1−S(0) in a resonantly excited semiconductor microcavity as a function of the photon escape
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text.
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Figure 4. Schematic description of the resonant hyper Raman scattering process in a semiconductor
microcavity. The continuous arrows represent the pump photons, while the dashed arrows represent
the emitted photons.

the absorbing QW.
Even higher levels of entanglement can be obtained by detuning the MCs from the exciton

energy and tuning the energy of the input light beam so that energy conservation implies pairs
of photon-like polaritons emerging from the scattering process. The inset in figure 3 shows
one normalized noise spectrum calculated by usingγx = 0.8 meV andγc = 2 meV.
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6. Conclusion

In this paper we have presented a fully quantum mechanical theory for an interacting system
of photons and Coulomb correlated electrons and holes in semiconductors using a pertubation
series in the exciting laser field. We have applied the theory to analyse the signatures of the
electromagnetic field quantization in the third order onlinear optical response of excitons. We
have shown that it is possible to transfer the exciton-exciton Coulomb correlation to photons,
producing thus pairs of near-gap photons with a high degree of quantum correlation.
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